Package: glmmSeq 0.5.5

glmmSeq: General Linear Mixed Models for Gene-Level Differential Expression

Using mixed effects models to analyse longitudinal gene expression can highlight differences between sample groups over time. The most widely used differential gene expression tools are unable to fit linear mixed effect models, and are less optimal for analysing longitudinal data. This package provides negative binomial and Gaussian mixed effects models to fit gene expression and other biological data across repeated samples. This is particularly useful for investigating changes in RNA-Sequencing gene expression between groups of individuals over time, as described in: Rivellese, F., Surace, A. E., Goldmann, K., Sciacca, E., Cubuk, C., Giorli, G., ... Lewis, M. J., & Pitzalis, C. (2022) Nature medicine <doi:10.1038/s41591-022-01789-0>.

Authors:Myles Lewis [aut, cre], Katriona Goldmann [aut], Elisabetta Sciacca [aut], Cankut Cubuk [ctb], Anna Surace [ctb]

glmmSeq_0.5.5.tar.gz
glmmSeq_0.5.5.zip(r-4.5)glmmSeq_0.5.5.zip(r-4.4)glmmSeq_0.5.5.zip(r-4.3)
glmmSeq_0.5.5.tgz(r-4.4-any)glmmSeq_0.5.5.tgz(r-4.3-any)
glmmSeq_0.5.5.tar.gz(r-4.5-noble)glmmSeq_0.5.5.tar.gz(r-4.4-noble)
glmmSeq_0.5.5.tgz(r-4.4-emscripten)glmmSeq_0.5.5.tgz(r-4.3-emscripten)
glmmSeq.pdf |glmmSeq.html
glmmSeq/json (API)
NEWS

# Install 'glmmSeq' in R:
install.packages('glmmSeq', repos = c('https://myles-lewis.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/myles-lewis/glmmseq/issues

Datasets:
  • metadata - Minimal metadata from PEAC
  • tpm - TPM count data from PEAC

On CRAN:

bioinformaticsdifferential-gene-expressiongene-expressionglmmmixed-modelstranscriptomics

5.98 score 18 stars 35 scripts 329 downloads 8 exports 112 dependencies

Last updated 2 years agofrom:8a473e1565. Checks:OK: 5 NOTE: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 17 2024
R-4.5-winNOTENov 17 2024
R-4.5-linuxNOTENov 17 2024
R-4.4-winOKNov 17 2024
R-4.4-macOKNov 17 2024
R-4.3-winOKNov 17 2024
R-4.3-macOKNov 17 2024

Exports:fcPlotggmodelPlotglmmQvalsglmmRefitglmmSeqlmmSeqmaPlotmodelPlot

Dependencies:abindaskpassbackportsbase64encbootbroombslibcachemcarcarDataclicolorspacecorrplotcowplotcpp11crosstalkcurldata.tableDerivdigestdoBydplyrevaluatefansifarverfastmapfontawesomeFormulafsgenericsggplot2ggpubrggrepelggsciggsignifglmmTMBgluegridExtragtablehighrhtmltoolshtmlwidgetshttrisobandjquerylibjsonliteknitrlabelinglaterlatticelazyevallifecyclelme4lmerTestmagrittrMASSMatrixMatrixModelsmemoisemgcvmicrobenchmarkmimeminqamodelrmunsellnlmenloptrnnetnumDerivopensslpbapplypbkrtestpbmcapplypillarpkgconfigplotlyplyrpolynompromisespurrrquantregqvalueR6rappdirsrbibutilsRColorBrewerRcppRcppEigenRdpackreformulasreshape2rlangrmarkdownrstatixsassscalesSparseMstringistringrsurvivalsystibbletidyrtidyselecttinytexTMButf8vctrsviridisLitewithrxfunyaml

glmmSeq

Rendered fromglmmSeq.rmdusingknitr::rmarkdownon Nov 17 2024.

Last update: 2022-10-07
Started: 2020-08-17